Tunneling of Transverse Acoustic Waves on a Silicon Chip
Nicholas P. Mauranyapin,
Erick Romero,
Rachpon Kalra,
Glen Harris,
Christopher. G. Baker,
Warwick P. Bowen
May 2021
Abstract
Nanomechanical circuits for transverse acoustic waves promise to enable new approaches to computing, precision biochemical sensing, and many other applications. However, progress is hampered by the lack of precise control of the coupling between nanomechanical elements. Here, we demonstrate virtual-phonon coupling between transverse mechanical elements, exploiting tunneling through a zero-mode acoustic barrier. This allows the construction of large-scale nanomechanical circuits on a silicon chip, for which we develop a scalable fabrication technique. As example applications, we build mode-selective acoustic mirrors with controllable reflectivity and demonstrate acoustic spatial-mode filtering. Our work paves the way toward applications such as fully nanomechanical computer processors and distributed nanomechanical sensors, and exploration of the rich landscape of nonlinear nanomechanical dynamics.
Publication
In Physical Review Applied
Senior Process Development Engineer
Erick Romero received his Ph.D. in Physics from the University of Queensland in Australia. As a postdoctoral fellow his research focuses on the fundamental origins of nanomechanical dissipation. His current research ranges from high precision sensors, nanomechanical computing, and nanomechanical hybrid systems. His research has been supported by CONACYT, the Australian Research Council, Lockheed Martin and the Australian Defence Science and Technology Group. He currently works at the Australian National Fabrication Facility supporting and developing nanofabrication processes. Contact him below if you would like to get in touch about nanofabrication.