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Review

Nanomechanical Dissipation and Strain Engineering

Leo Sementilli, Erick Romero, and Warwick P. Bowen*

Nanomechanical resonators have applications in a wide variety of 
technologies ranging from biochemical sensors to mobile communications, 
quantum computing, inertial sensing, and precision navigation. The quality 
factor of the mechanical resonance is critical for many applications. Until 
recently, mechanical quality factors rarely exceeded a million. In the past 
few years however, new methods have been developed to exceed this 
boundary. These methods involve careful engineering of the structure of 
the nanomechanical resonator, including the use of acoustic bandgaps and 
nested structures to suppress dissipation into the substrate, and the use 
of dissipation dilution and strain engineering to increase the mechanical 
frequency and suppress intrinsic dissipation. Together, they have allowed 
quality factors to reach values near a billion at room temperature, resulting 
in exceptionally low dissipation. This review aims to provide a pedagogical 
introduction to these new methods, primarily targeted to readers who 
are new to the field, together with an overview of the existing state-of-
the-art, what may be possible in the future, and a perspective on the future 
applications of these extreme-high quality resonators.
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In nearly all applications performance 
is dependent on the mechanical energy 
dissipation rate Γ, where a small dissipa-
tion rate is desirable to both isolate the res-
onator from environmental noise sources 
and to maintain coherent oscillation for an 
extended time. A more coherent resonator 
offers better stability and suppression of 
noise sources, thus allowing for cleaner 
and more precise readout.[38–40] The dis-
sipation rate is often compared to the 
mechanical resonance frequency ω m via 
the mechanical quality factor Q[41]
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The quality factor quantifies the number 
of coherent oscillations of the resonator 
before it decays to roughly 4% of its 
original amplitude. As also expressed in 
Equation (1), the quality factor can equally 

be described as the quotient of stored energy in the resonator 
W to the energy dissipated per cycle of oscillation ΔW/2π.

Recent years have seen dramatic progress in our understanding 
of the fundamental origins of the primary dissipation mechanisms 
relevant to nanomechanical resonators. From this, new engi-
neering techniques and strategies have emerged to suppress the 
dissipation. These new techniques include acoustic isolation,[42,43] 
soft clamping,[44,45] dissipation dilution,[46] and strain engi-
neering.[47] Leveraging these techniques has enabled quality fac-
tors approaching one billion at room temperature in amorphous 
nanomechanical resonators,[44,45,47] together with predictions that 
even higher quality factors should be possible using crystalline 
resonators.[47,48] This provides the prospect of orders-of-magnitude 
sensitivity enhancements in nanomechanical sensors,[49] extremely 
narrow nanomechanical filters,[50] high density nanomechanical 
memories,[51] and delay lines that can passively store information 
for many minutes,[52] as well as fundamentally new technologies 
such as nanomechanical computer[5] and quantum information 
processors.[53,54] The purpose of this review is to provide an intro-
duction to these new techniques, and an outlook on applications 
and what further advances may be possible in future.

1.1. Fundamentals of a Nanomechanical String Resonator

In this review, to provide concrete examples throughout, we con-
sider the case of a string resonator under tensile stress. At the 
most basic level, string resonators are analogous to guitar strings. 
They feature two clamping points and are sufficiently thin such 
that their resonances have roughly sinusoidal eigenmodes (or 
modeshapes), for the most part unaffected by the presence of the 
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1. Introduction

Nano- and micro-mechanical resonators have a broad range of 
applications, from micro-electromechanical sensors (MEMS),[1,2] 
to radio- and microwave frequency filters and clocks,[3,4] future 
computing technologies,[5] and tests of fundamental science.[6,7] 
As sensors, they have been applied in inertial and gyroscopic 
navigation,[8–14] gas and biochemical sensing,[15–17] atomic force 
microscopy, magnetometry,[18–20] acoustic and temperature 
sensing,[21–25] single protein mass spectroscopy,[26] and single 
molecule detection.[27] They are key elements for future com-
puter technologies based on nanomechanical motion,[28] and for 
future quantum information technologies due to their ability to 
mediate various quantum degrees of freedom.[29–32] Recently, 
high quality factor nanomechanical resonators have enabled 
a broad range of new quantum physics, such as cooling of a 
nanomechanical oscillator to its quantum ground state,[33,34] 
entanglement with microwave fields,[35,36] and entanglement 
between mechanical resonators.[37]
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clamping points. The fundamental mode of a string resonator has 
nodes only at the clamping points, and is labeled by the mode 
number n  = 1, whereas higher order modes have increasing 
numbers of nodes. An example of a string resonator is shown 
in Figure 1 together with the shape of its first transversal modes. 
The mode shape φ(x, y, z) of a mechanical resonator defines a 
normalized amplitude of displacement of each spatial element of 
the resonator. For a string, it is generally assumed to be a scalar 
field, with displacement only occurring in the vertical direction, 
defined here as the z-direction. Moreover, for a sufficiently thin 
string resonator with uniform width w the displacement is con-
stant across its width,[46,55] here defined to be the y-direction. 
For simplicity we take these approximations for the majority of 
this review, so that the n-th string eigenmode can be simplified 
to a unidimensional problem φn(x), where x is the longitudinal 
position along the string. This assumption is reasonable so long 
as the string has a uniform width and that its length L is much 
larger than both its width w and its thickness h (L ≫ { , }w h ).

Under the approximations outlined in the previous paragraph, 
the characteristic resonance frequencies, or eigenfrequencies, of 
a string resonator of length L and cross-section A are given by[41]
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where βσ = nπ/L is the wavenumber for the mode n, σ is the 
stress of the string, Iy is the geometric moment of inertia, and 
E and ρ are the Young’s modulus and density of the material 
respectively. Assuming a string with a rectangular cross-sec-
tional area so that A  = w  × h, the moment of inertia is given 
by Iy = Ah2/12. In the limit of high stress (σ > 105), which we 
will primarily focus on in this review, the second term largely 
determines the eigenfrequency. The eigenfrequency is then 
well approximated as /mω β σ ρ= σ .[41]

2. Mechanisms of Elastic Energy Dissipation

Micro- and nano-mechanical resonators are simultaneously 
subjected to various damping mechanisms. The magnitude of 
each mechanism’s contribution to the resonator’s total dissi-
pation typically depends on a large number of variables, often 
interconnected. These include the resonator’s geometry, mate-
rial, vibrational mode, resonance frequency, and surrounding 
pressure and temperature, among others. Identification and 
mitigation of these dissipation mechanisms in this multivariate 
space is a non-trivial task.

The dissipation mechanisms can be divided into intrinsic 
dissipation, intΓ , internal to the resonator itself, and extrinsic 
dissipation (also termed external dissipation), extΓ , related to the 
resonator’s interactions with its environment. The total quality 
factor of the resonator can then be expressed as

Q Q Q

1 1 1

int ext

= +  (3)

where Q /int m intω= Γ  and /ext m extQ ω= Γ  are the intrinsic and 
extrinsic quality factors, respectively.[55,56] In the following we 
introduce the various forms of intrinsic and extrinsic dissipa-
tion mechanisms common to micro- and nano-mechanical 
resonators, their dependencies on system parameters, and how 
extrinsic mechanisms may be suppressed.

2.1. Intrinsic Dissipation

A resonator’s intrinsic dissipation can be attributed to various 
processes occurring in the material’s bulk and surface.[57–59] This 
energy loss, inherent to the resonator, can be further divided into 
processes associated with the internal friction of the material and 
those more fundamental, unrelated to the frictional damping.[41] 

Figure 1. a) False color SEM image of a nanomechanical uniform string resonator on two pedestals, fabricated by the Quantum Optics Lab at the 
University of Queensland. The string resonator has a width of w = 5 μm, thickness of h = 80 nm and length of L = 1000 μm. b) Finite element modeling 
(FEM) simulations show the modeshape φ(x, n) of the first three eigenmodes (n = 1, 2, 3) for the string resonator shown in (a). These simulations 
show the far field acoustic radiation pattern as acoustic waves transmit out of the resonator and propagate through the substrate. Note that for n = 1 
the far field resembles the far field of a monopole. For n = 2 the two ends of the string are out-of-phase and the radiation pattern is a dipole. For n = 3 
the radiation pattern is a monopole with wavelength shorter than for the n = 1 case. c) Finite-element-method solvers modeling dissipation due to 
acoustic radiation for the first three eigenmodes n = 1, 2, 3. The FEM simulations are compared with known analytical solutions for n = 1. In this case, 

radQ  of the fundamental mode is fit with the approximated analytical expression as a function of thickness, described in ref. [48], with the prefactor 
α = 0.095. Calculations correspond to a silicon carbide uniform string of  L = 1000 μm and w = 5 μm on a silicon substrate.
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The internal friction of a resonator is determined by the material 
type and quality, commonly more significant in amorphous and 
defect-rich materials.[60] As the resonator’s atoms move during 
vibration, friction between them give rise to damping and energy 
loss.[61] This intrinsic friction can stem from defects, discontinui-
ties in crystalline materials, or molecular chain movements in 
amorphous materials. Frictional loss is commonly modeled as 
a lagged response to a coherent excitation, given by the Zener’s 
model of anelastic materials.[61,62]

Independent of this frictional loss, additional sources of 
intrinsic dissipation exist in nanomechanical resonators. These 
loss processes arise from the coupling of the resonator’s oscillating 
strain field to temperature fields or two-level systems.[41,56] Var-
ious causes of fundamental loss, such as thermoelastic damping, 
Akhiezer damping, and loss to two-level systems, have been well 
studied.[63–68] For a more thorough explanation of the various 
intrinsic dissipation mechanisms, refer to refs. [41, 69, 70].

2.2. Extrinsic Dissipation

Extrinsic dissipation can include gas damping, clamping 
loss, electrical charge damping, and magnetomotive damping 
among other forms of dissipation.[41] The total extrinsic quality 
factor is given in terms of the quality factors Qi of these various 
damping mechanisms as

Q Q
i

iext
1 1∑=− −  (4)

where the subscript i labels the different mechanisms.
In applications where the resonator must interact with a sur-

rounding medium, such as biochemical sensing,[71,72] acoustic 
sensing,[21] and hydrodynamic experiments,[73,74] medium inter-
action damping is often the primary source of damping.[75] As 
the name suggests, this loss arises from the interaction between 
a resonator and its surrounding medium. This medium, usu-
ally gas or liquid, damps the resonator’s motion through the 
exchange of energy during molecular collisions or viscous 
interactions.[41,76]

Where the application does not depend on interactions 
with the surrounding medium – such as inertial sensing,[10,49] 
nanomechanical circuitry,[77,78] or quantum information appli-
cations,[5,79] medium losses can be straightforwardly elimi-
nated by placing the resonator in vacuum.[75,80] In this case, 
clamping losses are generally the dominant source of external 
loss. Clamping losses, also known as radiation loss, arise from 
the modulation in strain at the clamping (or anchor) points at 
which the oscillating resonator is attached to its substrate. As 
a resonator oscillates it pulls on the clamping points, inducing 
strain and subsequent acoustic waves.[81] These acoustic waves 
radiate outward into the substrate carrying away energy that was 
previously stored in the resonator. The magnitude of clamping 
loss is dependent on both the impedance and mode matching 
between the resonator and substrate, as well as the geometry 
of the resonator.[41,82] Clamping loss has even been found to be 
sensitive to the way in which a chip is mounted, whether that 
be adhesive bonding, mechanical clamps, or resting unclamped 
under gravity.[83–85]

2.3. Suppressing Clamping Loss

A range of techniques have been developed to suppress the 
radiation of acoustic energy at clamping points. Generally, they 
involve either increasing the impedance mismatch between the 
wave in the resonator and that in the substrate,[86,87] acoustic 
wave bandgaps,[42–44,88] or acoustic filters based on nested 
structures.[89–91]

2.3.1. Impedance Mismatch and Clamping Loss  
of a String Resonator

In the case of a stressed string resonator, clamping loss occurs 
at each of its rigid clamping points, as portrayed in Figure 1b. 
The magnitude of this energy loss is determined by the ease 
at which acoustic energy stored in the string can propagate 
into the substrate. Due to the large size and mass difference 
between the string and its substrate, a large impedance mis-
match exists at the connecting junction. The impedance mis-
match causes a partial reflection of acoustic waves at the 
interface. The acoustic waves that do manage to travel through 
the junction carry some fraction of the total acoustic energy 
away from the resonator. Analytical approximations of radiation 
loss, and the quality factor associated with this loss radQ  exist, 
and rely on finding the density of states overlap between the 
resonator and substrate modes.[82]

Previous works deriving clamping loss consider only a single 
clamped[81] or unstressed string.[82] An exact analytical solution 
for a stressed string has not been derived but Qrad is known to 
scale with length and width of the resonator as /radQ L w∝ .[82,84] 
Commonly the clamping loss of string resonators is calculated 
using finite element method (FEM) solvers.[43,55] An advantage 
of using FEM solvers is the ability to alter the geometry of the 
clamping points and see its effect on radQ  without needing to 
update or create new analytical models. These solvers have 
proven to be a reliable method to calculate clamping loss, 
matching experimental data quite well for nanomechanical 
string resonators.[43] In Figure  1c we find radQ  based on finite 
element method solvers for the first three transverse modes 
and find the fundamental mode to agree well with the analyt-
ical approximation described in ref.  [48]. This analytical fit is 
a modification to the approximations described for a stressed 
membrane in ref. [57].

In general, maximizing the impedance mismatch between 
the substrate and resonator results in greater suppression of 
clamping loss. This has been demonstrated in trampoline reso-
nators, in which increasing the substrate thickness, relative to 
the resonator thickness results in an increased radQ .[86] Simi-
larly, since the impedance Z of a material is given by Z = ρvφ 
where vφ is the phase velocity,[92] changing the material of 
either the resonator or substrate can help lessen the effect of 
clamping loss.

2.3.2. Acoustic Bandgaps

Phononic bandgaps arise from periodic arrays called phononic 
crystals (PnC), causing acoustic waves with carrier frequency 
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within the bandgap to be unable to propagate. Mechanical 
modes within the bandgap experience a suppression of 
acoustic radiation into the substrate that is exponential with the 
number of unit cells in the crystal and can therefore be quite 
large.[42–44,88,93] Bandgaps can be engineered to encompass the 
frequency of a desired mode by applying the correct periodicity 
a of one repeated unit cell of the phononic crystal, much like a 
Bragg grating for the electromagnetic field.[94] The width of the 
gap can also be engineered by careful choice of the geometry of 
the unit cell.

Radiation losses in nanomechanical systems have been suc-
cessfully suppressed by implementing a variety of phononic 
crystals. For example, Yu et al.[88] and Tsaturyan et al.[42] simul-
taneously developed a 2D silicon phononic crystal that acousti-
cally isolates a Si3N4 square membrane as shown in Figure 2a. 
Here, acoustic waves generated by the motion of the membrane 
(red point in Figure 2c) are highly confined due to the phononic 
crystal, made of a squared lattice with a unitary cell shown in 
Figure  2b. The phononic crystal opens a bandgap in the lon-
gitudinal, shear, and transversal modes of the bulk silicon, as 
shown in Figure  2d. The presence of the phononic bandgap 
results in up to three orders of magnitude of amplitude isola-
tion from an external drive as shown in Figure  2e, where the 
mechanical response for two different devices is measured. The 
mechanical responses presented correspond to a device directly 
mounted on the silicon substrate (Device C, purple trace) and 
a device supported by a phononic crystal (Device A, red trace). 
The comparison between these two measurements shows that 
within the bandgap, noise sources external to the membrane 
are highly suppressed. Several mechanical eigenmodes exist 
within the bandgap (dashed lines), and therefore have reduced 
clamping losses.

Phononic crystals can be implemented as a 1D array that 
isolates specific modes from propagating. For example, 
Ghadimi  et  al., demonstrated a 1D phononic crystal that selec-
tively isolates in-plane flexural modes and confines them far 
away from the clamping points.[43] Figure 3a shows a false color 
SEM image of their phononic crystal integrated on a string reso-
nator. The phononic crystal is formed by unitary cell slabs that 
are connected longitudinally by a thin tether. At the center of the 

string, a defect cell is introduced, as shown in Figure 3b, where 
the string is coupled to a disk resonator for optical readout. The 
defect cell of length L supported by the phononic crystal is repre-
sented in a schematic in Figure 3c. Here, the six in-plane flexural 
modes are plotted as a function of the defect length L. The six 
eigenfrequencies corresponding to these in-plane eigenmodes 
are displayed with red dots in Figure  3d. The phononic crystal 
is made by periodically modulating the width of the string res-
onator. The dispersion relations of the phononic crystal for dif-
ferent acoustic polarizations are shown in Figure  3e: in-plane 
(solid red), out-of-plane (dashed blue), breathing (dashed green), 
and torsional modes (dashed orange). The gray regions corre-
spond to pseudo-bandgaps for in-plane modes.

As a final point on acoustic bandgaps, we would briefly 
note that an alternative method that has recently been devel-
oped to achieve such a bandgap, rather than creating a peri-
odic repeating structure, is to utilize a zero-mode acoustic 
waveguide.[28] In this case, no acoustic modes propagate at fre-
quencies beneath a critical cut-off frequency. The dissipation 
of energy into the waveguide from mechanical resonances at 
lower frequencies is exponentially suppressed, similar to the 
exponential suppression from a periodic lattice.

2.3.3. Nested Structures

Nested structures can also be used for clamping loss suppres-
sion, emulating analog filters typically used in electronics. A 
well known macroscopic example of such an approach is the 
mass-spring stacks that have been implemented as acoustic fil-
ters for the vibration isolation of mirrors used in gravitational 
wave detection.[95–97] In nanomechanics, nested low-pass filters 
have also proven to reduce the contribution of clamping loss. 
In this case, one resonator is nested within another ancillary 
resonator, or within a series of them.[89,90,98,99] The series of 
resonators are designed to be at different frequencies such that 
the overall coupling between them is suppressed. With proper 
design, a central nested resonator can be acoustically isolated 
from its surroundings, reducing the amount of energy that can 
couple outward and be lost into its substrate. As a result, the 

Figure 2. a) Optical image of a central squared Si3N4 membrane resonator (yellow) supported by a 2D phononic crystal. b) Unitary cell of the phononic 
crystal, where the geometric parameters of the cell a, b, w, and t define the position and width of the bandgap. c) Zoom in of the central cell where the 
membrane has been fabricated. The red and purple dots denote the position of the light probe for the measured traces in (e). d) Simulated disper-
sion relation for the device in (a), where the grey regions denote the regions of the bandgaps and the additional colors represent various mode types. 
e) Measured mechanical displacement of a central membrane mounted in a phononic crystal (red), compared to a reference device consisting of a 
membrane without a phononic shield (purple). Reproduced with permission.[88] Copyright 2014, AIP Publishing.
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quality factor associated with clamping loss of a nested reso-
nator can be increased. This has been experimentally demon-
strated with nested MEMS resonators,[89,90] having achieved a 
suppression of power loss of ≈60 dB.[98]

An example of a nested MEMS resonator is shown in 
Figure 4a. The resonator consists of outer trampoline tethers, 
suspending a thick silicon mass and an inner nested trampo-
line resonator. The thick silicon mass mediates the propagation 
of acoustic waves between the substrate and nested trampoline, 
acting as an acoustic filter. This filter can be modeled using the 
power transfer function

( )
( )

m
a
4

a
2

m
2 2

a
2

m
2T ω ω

ω ω ω
=

− + Γ
 (5)

where mω  is the angular frequency of the isolated resonator, and 
aω  and aΓ  are, respectively, the angular frequency and damping 

rate of the ancillary resonator.[89,90] As can be seen in Figure 4c, 
the power transfer function models experimental data well.[89] 
At the nested resonator’s mechanical frequency (250 kHz) it 
can be seen the transfer function is quite low, signifying limited 
transfer of acoustic power between the substrate and nested 
resonator at that resonance frequency. In this case of a single  
ancillary resonator the transfer function scales as ( / )a m

2ω ω  
(a slope of −40 dB per decade) above the cut-off frequency (the 
frequency of the ancillary resonator), acting as a second-order 
low-pass filter. It is interesting to note that cascading n nested 
resonators, in the form of mass-spring stacks in gravitational 
wave detection ancillary resonators emulates the characteristic 
n-th order transfer function of a Butterworth filter in elec-
tronics.[100] Indeed stacking n resonators results in mechanical 
suppression with scaling of n( / )a m

2ω ω .[96]

3. Dissipation Dilution

Section 2 introduced the various forms of dissipation relevant 
to nanomechanical resonators, and showed that extrinsic loss 
mechanisms can be overcome by controlling the interaction 
between the nanomechanical resonator and its environment. 
In this section we explain the method of dissipation dilution, 
which can be used to improve the quality factor by lessening, or 
diluting the intrinsic dissipation of a nanomechanical resonator.

3.1. Origins of Dissipation Dilution

The concept of dissipation dilution first arose in the context 
of gravitational wave detection, where the exquisite precision 
required to detect faint sources necessitated the understanding 
and mitigation of intrinsic dissipation mechanisms.[101,102] The 
mirrors used in gravitational wave interferometers such as the 
Laser Interferometric Gravitational wave Observatory (LIGO) 
are suspended to isolate the measurements from acoustic and 
other vibrational noise sources. However, the act of suspending 
mirrors, while suppressing external noise sources, also intro-
duces thermal noise to the detection. This noise scales linearly 
with the mechanical dissipation of the wires.[41,102–104] Conse-
quently, achieving low wire dissipation is crucial to reach the 
ultimate limits of sensitivity. Through the optimization of 
suspended mirror designs, it was concluded that the dissipa-
tion can be reduced under a gravitational potential.[101,102] This 
can be attributed to the resonator storing more energy under 
a gravitational potential, while leaving its mechanical damping 
mechanisms unaffected. Thus, the proportion of energy dissi-
pated within one cycle is reduced and the resonator exhibits a 
longer decay time (see Equation (1)).

Figure 3. a) False color SEM image of a string resonator with periodic unit cells forming a phononic crystal (PnC). b) Disc resonator (blue) used to 
couple and measure the displacement of PnC string, specifically with the center defect. c) Schematic of the PnC string and FEM simulations of the 
eigemodes with defect length L ranging from 2.3 to 12.4 μm. d) Resonance frequency of the defect modes with length L supported by a 1D phononic 
crystal. The red dots represent the eigenfrequency defined for the defect length shown in (c). e) Dispersion relation for in-plane (red), out-of-plane 
(blue), breathing (green), and torsional modes (orange). Gray regions correspond to pseudo-bandgaps for in-plane modes. Adapted with permis-
sion.[43] Copyright 2017, American Chemical Society.
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Following LIGO’s findings, the same phenomena of dissipa-
tion dilution was rediscovered in the context of nanomechanics 
when Verbridge  et  al. found that silicon nitride nanostrings 
under high-stress have higher than expected quality factors.[105] 
They had compared these silicon nitride strings to cantilever 
beams of the same frequency and found the strings to possess 
less dissipation. It was concluded that the enhanced quality 
factor and lower energy dissipation were a result of the high 
tensile stress. Since the motion of the string was normal to its 
high lateral tensile stress, it was able to store significantly more 
elastic potential energy than a cantilever, similar to the addition 
of gravitational potential in the case of LIGO.

3.2. Stress as a Lossless Potential

Analogous to other resonators, the energy stored by a nanome-
chanical resonator oscillates between potential and kinetic energy. 
The potential energy W of an unstressed resonator is stored in two 
forms, elongation ElongationW  and bending BendingW . This potential 
energy is converted into kinetic energy during a nanomechanical 
resonator’s oscillation cycle. This conversion between potential 
and kinetic energy is not without loss. As the resonator oscillates, 
the induced strain and bending give rise to all the intrinsic loss 
mechanisms described in Section 2.1. These can be divided into 
contributions from the resonator’s elongation and bending. We 
define the energy lost per oscillation cycle due to each of these 
contributions as / 2ElongationW π∆  and / 2BendingW π∆ .

Using the definition in Equation  (1) the intrinsic quality 
factor of an unstressed resonator can then be expressed as

2int
Elongation Bending

Elongation Bending

π=
+

∆ + ∆
Q

W W

W W
 (6)

Applying tension to a nanomechanical resonator introduces 
a third contribution to the potential energy, TensileW . Unlike the 
bending and elongation energies, which experience losses 
due  to frictional forces, in the linear regime (u0 ≫ h) the ten-
sile energy is virtually lossless. This is because the ratio of 
the tensile energy fluctuations to the tensile energy is much 
smaller than the corresponding ratios for bending and elon-
gation.[106,107] The lossless nature of the tensile energy can be 
further understood by recognizing that the work done by ten-
sion is nearly zero (for flexural modes), as the deflection of the 
resonator is normal to the in-plane tension force. This indicates 
that the mechanical energy lost to the work done by the tension 
force is negligible.

Under this approximation, the quality factor of a stressed 
resonator can be written as

1int
Tensile

Elongation Bending
intQ Q

W

W W
Q DD = × +

+






= ×  (7)

The term D, usually referred to as the dissipation dilution 
factor, quantifies the fractional increase in mechanical quality 
factor due to the tensile stress.

3.3. Quantifying the Dissipation Dilution Factor

The tensile, elongation, and bending energy of a nano-
mechancial resonator can be calculated from its material 
properties and resonant modeshape (φn(x) in the 1D limit). 
Transversal modes are commonly targeted when engineering 
the dissipation of nanomechanical resonators because they 
exhibit higher dissipation dilution than in-plane, torsional, 
and breathing modes.[46,108] Therefore we will limit ourselves to 

Figure 4. a) Optical image of a nested trampoline resonator from ref. [89]. b) SEM image of a nested resonator from ref. [90]. c) Mechanical response 
of the device in (a). The chip was externally driven by a piezo and transmissions between the chip, outside the device, and the inner resonator were 
measured. This was done for both single and nested resonators. a,c) Reproduced with permission.[89] Copyright 2016, AIP Publishing. (b) Reproduced 
with permission.[90] Copyright 2019, University of Queensland.
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describing these modes. The resonator’s transversal deforma-
tion in these modes can be described using its displacement 
field u(x, y, z), which under the assumptions described earlier 
in Section 1.1, reduces to u(x) = u0, nφn(x), where u0, n represents 
the amplitude of maximum displacement of the n-th mode.

In this unidimensional limit, the tensile, elongation, and 
bending energy are given respectively by[41,46]

2
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0

2

W
A du x

dx
dx
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As can be seen, the tensile energy is largely determined by the 
stress σ   but is also influenced by the modeshape.[41,46] On the 
other hand, the stored elongation and bending energies are not 
directly dependent on the tensile stress σ. However, since the 
stress is partly responsible for determining the resonator’s mode-
shape, as we will soon show, it does indirectly affect these two 
energies. It is worth noting that the tensile and elongation ener-
gies are both determined by the first derivative of the modeshape, 
whereas the bending energy is determined by the second deriva-
tive. Or in other words, unlike the tensile and elongation contribu-
tions, the bending energy depends on the curvature of the mode.

It can be seen from Equation (9) that the elongation energy 
is quartic in the deflection of the resonator. As such, it is a non-
linear term, responsible for the Duffing nonlinearity at large 
amplitudes.[109,110] By contrast, the bending and tensile energies 
are quadratic in deflection. They are responsible for the linear 
restoring force that causes the resonator to oscillate. Conse-
quently, in the usual case where the dynamics of the resonator 
is well described as linear, we can expect the elongation energy 
to be insignificant compared to the other two energy compo-
nents. Indeed, taking the example of a string resonator with a 
fundamental sinusoidal modeshape (φ(x) = sin (πx/L)) it is pos-
sible to show, using the moment of inertia defined earlier (see  
Equation  (2)), that (W W h ug / ) 4 /9Bendin Elongation

2
0,1
2≈ . Accordingly, 

BendingW  is greater than ElongationW  as long as the displacement field 
satisfies u0, 1 < 2h/3. That is to say, the elongation energy may 
be neglected as long as the amplitude of oscillation is signifi-
cantly smaller than the thickness of the string. We make this 
assumption henceforth. The dissipation dilution factor can 
then be simplified to

1 Tensile

Bending

D
W

W
≈ +  (11)

Thus for a linear resonator the key to maximizing the dilution 
factor D is to maximize the ratio of tensile energy TensileW  to that 
stored in bending BendingW .

Approximating a string resonator’s modeshape using a sinu-
soidal function is common due to the simplicity and general 

intuition the generalization provides.[47,84] We did just that to moti-
vate the validity of Equation (11) for stressed resonators with linear 
dynamics. However, a sinusoidal approximation does not perfectly 
describe the true resonant modeshape of a stressed string.[84,106] 
The discrepancy lies in the region closest to the clamping points, 
where the resonator is firmly clamped. As a direct consequence 
of the boundary conditions imposed by these clamps, sharp cur-
vatures arise in the resonator, making a sine function inaccurate 
in this region. To account for these effects, a more general mode-
shape must be used. Ref. [41] derives the modeshape

( ) sin( ) (cos( ) )φ β β
β

β= − −σ
σ

σ
β−x x x en

E

xE  (12)

where βσ = nπ/L represents the wavenumber and /β σ= A EIE y  
accounts for the flexural rigidity.
Figure  5a shows the fundamental mode of a stressed 

string with two different prestresses, using the more appro-
priate modeshape defined in Equation  (12). Both mode-
shapes largely resemble a sinusoidal curve, but deviate near 
the clamping points (see Figure  5a,b). Figures  5c,d,e plot 
the integrands within Equations  (8)–(10) to illustrate the 
elongation, bending, and tension energy densities. They 
show that the modeshape modification due to stress signifi-
cantly changes the amount and location of stored energy. 
Indeed, Figure  5d shows that increasing the stress from 10 
to 1000  MPa concentrates the bending energy very near the 
clamping points and increases the energy density near them 
by two orders-of-magnitude.

For a more thorough comparison, we plot the energy stored 
in bending BendingW , elongation ElongationW , and tension TensileW  as 
a function of tensile stress in Figure  6a for a uniform string 
of typical size. It is evident that the modeshape φ(σ) is stress 
dependent since the bending BendingW  and elongation ElongationW  
energies change as a function of stress while possessing 
no direct dependency (see Equations  (9) and  (10)). It is also 
apparent that the three forms of stored energy possess different 
scalings as a function of stress, indicating that stress can dras-
tically alter the way a resonator distributes its stored energy. 
The elongation energy changed only marginally with increased 
stress, while the bending and tensile energies scale roughly 
to the square root and linearly with stress, respectively. Since 
the tensile energy increases fastest with stress, it is clear from 
Equation  (11) that increasing stress will promote dissipation 
dilution. We quantify this enhancement in dissipation dilution 
as a function of stress in Figure 6b, noting that at around 1 GPa 
a uniform string possesses a dilution factor on the order of 
hundreds for its fundamental mode. From this figure it is also 
clear that at typical oscillation amplitudes the elongation energy 
contribution to the dilution factor is negligible.

Neglecting the elongation energy (and therefore using  
Equation  (11)) and using the corrected modeshape in  
Equation (12) to account for the sharp curvatures at the clamps 
we can simplify the dissipation dilution factor of a uniform 
string resonator to be[41,111]
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Adv. Funct. Mater. 2021, 2105247



www.afm-journal.dewww.advancedsciencenews.com

2105247 (8 of 18) © 2021 Wiley-VCH GmbH

It is noticeable that a large aspect ratio L/h is advantageous 
to increase the dissipation dilution factor, with D scaling as 
L/h in the high stress limit. This is particularly beneficial since 
the clamping loss also reduces as the device’s aspect ratio 
increases.[57,86] It is also noticeable that σ∝D  at high stresses, 
as can also be seen in Figure 6b.

The form of Equation (13) allows the contribution to the dis-
sipation dilution from the bending at the clamping points to 

be compared to the contribution from bending found along the 
remainder of the string.[41,84] The first term can be attributed to 
the portion of the string which largely resembles a sine func-
tion, while the second term represents the regions close to the 
clamping points shown in Figure  5b. At levels of substantial 
stress, in our string example σ > 105 Pa, the second term rep-
resenting the bending near the clamps dominates the dilution 
factor. Therefore it is the bending at the clamping points, rather 

Figure 5. a) Modeshape φ(x/L) normalized to x/L = 1 and φ(0.5) = 1 for the fundamental mode of a uniform string resonator with σ = 1000 MPa (red) 
and σ = 10 MPa (blue). b) Zoom in of the modeshape shown in (a) for the two different stress regimes. c) Geometrical energy density of WElongation in 
Equation (9). d) Geometrical energy density of WBending  in Equation (10). e) Geometrical energy density of WTensile in Equation (8).

Figure 6. a) Distribution of potential energy stored as bending BendingW , elongation ElongationW , and tensile WTensile  as a function of stress. b) Energy 
ratio as a function of tensile stress between the tensile energy and the other two components of the elastic potential energy, bending, and elongation. 
c) Normalized dissipation rate as a function of stress. Found using the approximation made in Equation (12) (dashed light gray) and from full ana-
lytical solution including elongation (dashed black). These calculations were made for the fundamental mode of a uniform 3C-SiC string resonator with  
L = 1000 μm, w = 1 μm, and h = 300 nm. The calculations also consider u0 = 0.1 h for comparative reasons, specifically due to the elongation energy 
being many order of magnitude smaller at (more common) lower drive amplitudes.
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than the entire length of the string, that is generally the lim-
iting factor for the level of achievable dissipation dilution.

So far in this section we have discussed the effect of dis-
sipation dilution on the quality factor of a string resonator. 
However, the intrinsic quality factor depends on both the reso-
nance frequency and intrinsic dissipation rate. While it is clear 
that increased stress will increase the resonance frequency 
( )mω σ∝  (see Equation  (2)), the effect on the dissipation is 
less obvious and relatively unexplored in literature (only seen 
in ref. [106]). To examine this, we show the change in the decay 
rate as a function of stress for a string resonator in Figure 6c. 
We plot this considering the approximation in Equation (13) as 
well as the full analytical expression. The difference between 
the two lies in the fact that the latter includes the contribution 
of elongation energy toward the dilution factor. We see at high 
stress their differences are indiscernible, consistent with the 
rest of our assumptions and approximations. Both models pre-
dict a modest reduction in the dissipation with stress. Using the 
full analytical expression, the reduction in dissipation asymp-
totes to a maximum of around 20% in the high stress limit.

4. Soft Clamping

In Section 3 we showed that the bending energy is highly con-
fined near the clamping points of a uniform string resonator, 
and that the contribution of this bending limits the maximum 
achievable dissipation dilution factor. Following this insight, 
one might anticipate that a lessening of bending, precisely in 
this region, could significantly improve the dissipation dilution 
factor. A technique highly effective in reducing bending at the 
resonator clamping points is known as soft clamping.[44,47]

Soft clamping reduces bending by altering the boundary con-
ditions of the resonator,[44] engineering its geometry to produce 
a gradual transition in the gradient of the modeshape between 
the clamping points and the rest of the resonator. This can be 
interpreted as a progressive change in impedance along the 
resonator, to remove the large discontinuous impedance mis-
match between the resonator and substrate. While a small 
impedance mismatch is beneficial in reducing a resonator’s 
bending energy BendingW , it is unfavorable for clamping loss (see 
Section  2.3). To overcome this trade-off, soft clamping tech-
niques are commonly paired with the techniques to suppress 
clamping losses discussed in Section 2.3.

Simple changes to the clamp geometry have shown to be an 
effective way to enhance dissipation dilution. Small changes 
such as altering the width of the resonator near the clamping 
points have demonstrated some degree of soft clamping 
in string and trampoline resonators.[90,111] For example, the 
rounding of a string resonator’s clamps has shown to increase 
the quality factor by a factor of two by lessening the curvature 
of the mode.[90,111]

Another approach that enables soft clamping is the use of 
higher order defect modes in phononic crystals. These modes 
possess the highest amplitude in the center of the resonator 
away from the clamping points. This amplitude then gradu-
ally lessens as the mechanical wave hits additional potential 
barriers, which form the phononic crystal. With enough unit 
cells, the bending near the clamps can be greatly reduced. This 

has proven to be a very effective way to eliminate the storage 
of bending energy at a resonator’s clamping points, thus 
increasing its dissipation dilution. For instance, it has enabled 
nearly an order of magnitude enhancement in the quality factor 
of Si N3 4  string resonators.[43]

Soft clamping via higher order defect modes has similarly 
been incorporated into membranes.[44,112] Figure  7 shows a 
honeycomb membrane demonstrating several soft-clamped 
modes.[44] The structure consists of a 2D array of periodic and 
rectangular unitary cells shown in Figure  7b, creating a pho-
nonic bandgap on the membrane modes, shown in Figure 7c. 
A defect mode is engineered to be localized at the center of 
the membrane, as shown in Figure 7a. The phononic bandgap 
confines additional mechanical modes mainly within the defect 
as shown in Figure 7d. Soft clamping is achieved by gradually 
modifying the rectangular lattice close to the defect, reducing 
the bending exhibited on the confined modes. The soft-
clamping here, in a highly stressed Si N3 4 material, dilutes the 
intrinsic loss by five orders of magnitude.[44]

Recently an alternative technique, specifically the use of 
hierarchical structures, has been proposed and experimentally 
realized to exhibit a large degree of soft clamping.[45,113] These 
resonators consist of cascading branches of beams, forming 
junctions under tension between the clamping points and the 
center of the resonator. At these junctions the overall curvature 
of the mode is lessened, compared to that of a single beam. The 
culminating effect of many branches collectively then results 
in extremely effective soft clamping, with virtually no bending 
occurring near the clamping points. Interestingly, a separate 
work using topology optimization arrives at a similar geom-
etry.[114,115] In this work, they use computer-aided geometrical 
optimization to determine an ideal resonator geometry. This 
optimization works to maximize the quality factor and fre-
quency of a resonator’s fundamental mode by minimizing its 
bending energy and radiation loss.

5. Strain Engineering

Soft-clamping is an effective way to increase a resonator’s dissipa-
tion dilution by minimizing the elastic potential energy stored as 
bending. While this has led to orders of magnitude improvements 
in resonator quality factors,[44] the form of the dilution factor in 
Equation (11) suggests that further improvements should be pos-
sible by focusing on increasing the tensile energy TensileW .

As its name implies, the tensile energy is directly related to 
the tensile stress in a resonator (see Equation (8)). Commonly 
stress is incorporated via the growth process of the film from 
which the resonator is fabricated. Deposition stresses, depσ , of 
up to ≈1 GPa are regularly achieved through these growth pro-
cesses in Si N3 4 and SiC .[47,87,116] While considerable, this mag-
nitude of stress is well below the yield strength of these mate-
rials, which quantifies the maximum stress tolerated before 
fracturing. For example Si N3 4 has a yield strength of 6 GPa,[86] 
while it is 21 GPa for SiC,[48] and 35 GPa for diamond.[117] Fur-
thermore, stress relaxation occurs upon release of nanome-
chanical resonators which means that, in practice, the stress of 
a uniform string resonator will always be below the stress of 
the unreleased film.
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The relaxation of stress on release occurs due to the removal 
of the transverse stress in the resonator. This can be understood 
intuitively by considering a rubber band. As the rubber band 
is pulled longitudinally, its width and thickness compresses. 
Analogously, after release the width and thickness of a nano-
mechanical resonator compresses to relax some of the resona-
tors longitudinal stress. The magnitude of this compression is 
determined by the Poisson ratio ν of the material. For example, 
a uniform string resonator will always relax to a stress of 

(1 )depσ σ ν= × − , independent of its width.[108] Since the Poisson 
ratios of materials that are typically used in nanomechanics are 
in the range of ν  ≈ ~0.25, surpassing ≈75% of the deposition 
stress in string resonators is challenging.[55,90]

5.1. Local Stress Enhancement

The above discussion leads to the question of whether it is pos-
sible to achieve stresses beyond the deposition stress by the 
use of other means. Recent developments in semiconductor 
and nanomechanical systems have shown the feasibility of 
locally enhancing stresses by engineering a nanowire or reso-
nator’s geometry.[47,86,118] In instances where this idea has been 

exploited, it has allowed for maximal local stresses of 3.8[47] and 
6  GPa[86] in Si N3 4 resonators, and 7.6  GPa[118] in Si nanowires, 
approaching the yield strength of both materials.

To motivate how choice of geometry can create local stress 
maxima we consider the case of a prestressed string with 
width that is nonuniform, varying along its length, such as 
that presented in Figure 8a.[118] For simplicity, and since res-
onators are typically fabricated by under-etching a uniform 
thin film, we consider the thickness h to be constant. We also 
assume that the total length of the resonator remains fixed, 
since it is rigidly clamped in this direction. Along with the 
stress relaxation exhibited by a uniform string, when released 
from its substrate, a nonuniform string also exhibits stress 
transfer. This is required to maintain a constant force of ten-
sion FT along the string. One half of the string presented in 
Figure  8a can be seen in Figure  8b. Here, at the interface 
between the wider and narrower regions, we denote the two 
acting tension forces. These are the tension forces of region 
a acting on region b, Fab, and vice versa Fba. Since the ten-
sion force is equal to FT = σA, where A is the resonator’s cross 
sectional area, the total force TotalF  at the interface immediately 
after release of the structure is TotalF A Aa a b bσ σ= − . For a depo-
sition prestress depσ , ( ) (1 )TotalF A Aa b depσ ν= − − . Designing the 

Figure 7. a) Micrograph of a patterned high stress silicon nitride membrane from ref. [44]. The membrane consists of periodic hexagons and a central-
ized defect. Measured out of plane displacement for one localized mode. b) Stress distribution of one rectangular unit cell. c) Dispersion diagram, 
indicating a quasi-bandgap from 1.4 to 1.7 MHz, highlighted in gray. d) Simulations of many defect mode’s amplitudes, all demonstrating some degree 
of soft clamping. e) Corresponding simulated displacement fields, taken by two normal cuts shown in (di). Reproduced with permission.[44]  Copyright 
2017, Wiley.
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areas of regions a and b to be different, means at the moment 
of release of the structure there is a nonzero net force. As a 
result region b pulls on region a until the stress in region a 
is elevated enough to make the net force zero. In this way, 
nonuniform geometries can allow local stresses that exceed 
the maximum deposition stress.

The amount of local stress enhancement relative to the 
deposition stress is determined by the width and length ratios 
of the narrow to wider regions. As a general rule, to increase 
the stress of the narrow region by a factor C above the depo-
sition stress, the wider regions need to be C times wider and 
longer. This can be seen in the blue trace in Figure 8c, repre-
senting the strain profile ϵ (related to the stress by ϵ = σ/E) 
along the string’s length. Here the center region was chosen 

to be roughly 1.5 times shorter and 12 times narrower than the 
larger region, allowing for local strain enhancement of four 
times the deposition strain. It can also be seen that this local 
strain enhancement results in a decrease in strain everywhere 
else in the string. For more thorough analytical results, refer to 
refs. [108,118].

The idea of local strain enhancement has been demon-
strated with success in several nanomechanical devices,[86,119] 
as shown for example in Figure 9. The trampoline resonators 
in Figure 9a–c achieved near-yield-strength stress as the larger 
width of the clamping points and center pad compared to the 
tethers allows for strain transfer to the tethers. This allowed 
quality factors as high as Q ≈ 108 to be obtained, corresponding 
to dissipation rates of 1.4 mHzΓ ≈  at room temperature.[86] 

Figure 8. a) Colored SEM image of a suspended silicon bridge. The total length of the bridge is denoted B, with length A being the length of the 
narrow region. Their respective widths are denoted b and a. White scale bar in the top left corresponds to 300 nm. b) FEM simulation of one half 
of the device presented in (a). Here the light gray represents the geometry of the string before release, and black represents the structure in equi-
librium after release and transfer of stress. The forces acting on the interface (black arrows), whose vector length corresponds to force magnitude. 
Fba represents the pulling force exerted by region b on region a, and vice versa. c) Simulated strain profiles along one cut along the length of the 
bridge. The blue trace corresponds to the strain profile along the beam in the blue or <110 > direction in (a). The red and green traces follow the 
same cut along the length but represent the strain profiles in the <001 > and <1 − 10 > directions respectively. (a,c) Adapted with permission.[118]  
Copyright 2012, Wiley.

Figure 9. a–c) FEM simulations modeling the stress relaxation of trampoline resonators presented in ref. [86]. b,c) Stress distribution at the resonator’s 
clamping points and central pad, respectively, where the arrows denote length contraction. Reproduced with permission.[86] Copyright 2016, American 
Physical Society. d) False colored SEM image of clamp-tapered string resonators from ref.  [119]. e) Schematic of relaxed stress distribution at one 
clamping point of the same devices in (d). Adapted with permission.[119] Copyright 2019, American Chemical Society.
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Applying the same idea of varying the cross-section, but instead 
tapering near the clamping points of a string resonator has also 
been found to improve the quality factor, in this case by roughly 
a factor of two.[119]

5.2. Strain Engineering

While refs. [86,119] discussed in the previous section both 
achieve some level of dissipation dilution by engineering the 
local strain in nanomechanical resonators, the devices would 
at some point be limited because, although the maximal ten-
sile stress of the resonator is increased, the wider regions of 
the resonator actually lose tensile stress. This essentially coun-
teracts any improvements in dissipation dilution if the mode 
of the nanomechanical resonator extends into the wider region 
(see Equation (8)). Since it is common for the mode of a reso-
nator to extend over the full length of the device, a localized 
stress enhancement does not necessary guarantee higher dis-
sipation dilution. For example, consider the devices presented 
in Figure 9a–c. The tethers, which cover a large portion of the 
mode, also possess enhanced stress through stress transfer 
from the clamping points and central pad. However, the mode-
shape extends over the full device, including both the central 
pad and clamping points which, due to stress transfer, have 
reduced local stress. So while the devices very likely benefited 
from local stress enhancement, better overlap of the locally 

elevated stress with the resonant modeshape could have 
allowed for greater dissipation dilution (assuming the dissipa-
tion was not clamping loss limited).

We see from the above discussion that to fully benefit from 
local stress enhancement it is necessary to colocate the mode 
of the resonator with the region of high stress. This technique 
is known as strain engineering, and was first demonstrated 
by Ghadimi  et  al.[47] They used a tapered string cross-section 
to incorporate locally enhanced stress into a phononic crystal 
defect mode (see Figure  10a), much like those presented in  
Section 4.[47] They designed the structure of the resonator such 
that the nodes of one particular resonant mode were colocated 
spatially with the regions of lower stress, while the anti-nodes 
were colocated with regions of higher stress. In this way, the 
stress of the regions that exhibit large displacements is, on 
average, increased. This results in more stored tensile energy 
and a higher dissipation dilution factor.

Figure 10c quantifies the enhancement gained from incorpo-
rating strain engineering by comparing a tapered soft-clamped 
beam (red points) to a soft-clamped beam (blue points).[47] It is 
evident that tapering the beam allows the resonator to achieve 
higher quality factors through additional dissipation dilution. 
This is unattainable with the untapered beams because, although 
soft-clamped, local stresses were not increased above the materi-
al’s deposition stress. In other words, the difference between the 
quality factors can be attributed to the fact that one incorporates 
soft clamping only (blue points), while the other overlays strain 

Figure 10. a) SEM image of a tapered non-uniform string resonator. b) Width w(x) and stress σ(x) profiles of their resonators, as well as a high quality 
factor defect mode shape u(x). c) Q versus mode frequency for several geometries of strings, each geometry denoted by color to its right. d) Defect 
mode quality factor versus thickness plot. Reproduced with permission.[47] Copyright 2018, AAAS.
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with the regions of the displacement field in a soft clamped 
mode to accomplish strain engineering (red points).

The devices presented in Figure  10a,b showed a quality 
factor enhancement of up to an order of magnitude compared 
to untapered soft-clamped beams of similar frequencies. They 
demonstrate strain engineering is a practical technique which 
can elevate deposition stress in a resonator to close to the mate-
rial’s yield strength. Without strain engineering, this would 
require higher deposition stress or external forces that enhance 
stress over the entire length of the resonator.

5.3. Prospects for Strain Engineering

Strain engineering has proven to be a powerful technique to 
enhance the dissipation dilution in nanomechanical resonators. 
The effectiveness of this technique is contingent on the use of 
a film which is intrinsically prestressed and has a high yield 
strength. For this reason, silicon nitride has been largely used to 
make highly diluted resonators. Highly stressed silicon nitride 
thin films are commercially available, and can be deposited on 
silicon, meaning they are compatible with well known nanofab-
rication procedures and equipment. Indeed, in general, stressed 
resonators fabricated from Si N3 4 (red triangles) have a record of 
allowing significantly higher quality factors than those fabricated 
from other materials (all other points), as shown in Figure  11 
and Table  1. However, the local stresses engineered into these 
resonators now approach the yield strength of Si N3 4, limiting 
the prospects for further improvements in quality factor.

To examine whether alternative materials could allow for 
better performing resonators in the future, we consider silicon 
carbide,[48,120,121] graphene,[15,104,122] and diamond,[123–125] com-
paring their upper-bounds of performance relative to silicon 
nitride. The upper-bounds are calculated by assuming the 
material’s intrinsic quality factor is the highest experimentally 
demonstrated to our knowledge at room temperature,[121,123,126] 
and their dissipation dilution limit is set by the material yield 
stress,[48,117,127] as described in ref. [46]. We have made these esti-
mates under the assumption that no other intrinsic loss mecha-
nism becomes significant at higher stress. This assumption is 
consistent with experimental work using silicon nitride.[47,86,119] 
For graphene and 2D materials in general, it is much less 
clear whether this assumption will prove to be appropriate, 
since the nature of their intrinsic loss mechanisms is still up 
for debate.[128] In order to compare the potential of each mate-
rial, we must also assume extrinsic loss, such as clamping loss, 
is sufficiently suppressed using the techniques described in  
Section  2.3. Compared to silicon nitride, all three proposed 
alternatives have higher yield strength limits, while at the same 
time silicon carbide and diamond have less intrinsic dissipation.

It can be seen from the shaded regions in Figure  11 that 
these alternative materials indeed enable significantly improved 
quality factors due to their favorable mechanical properties. 
Resonators made of highly stressed silicon carbide for example, 
allow for the possibility of quality factors over an order of mag-
nitude higher than what is possible with silicon nitride. Gra-
phene and diamond possess even more potential advantage, 
offering almost three and four orders of magnitude respectively 

Figure 11. Comparison of stressed silicon nitride (red) resonators to stressed alternative material resonators. Alternate materials include silicon car-
bide (3C-SiC) (black), silicon nitride with aluminum (green), aluminum (green), gallium arsenide (blue), gallium nitride (green), graphene (purple), 
graphene niobium diselenide (purple), tungsten diselenide (green), and indium gallium phosphide (green). The plot considers highly stressed nano- 
and micro-mechanical string, trampoline and membrane resonators, at both room and cryogenic temperatures (see Table 1). Additional references 
incorporated in the figure, but not in the main text include, but not in the text include[138–140] for silicon nitride and[141–149] for alternative materials.
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in quality factor enhancement for a given resonance fre-
quency. These improved quality factors could be instrumental 
in advancing many existing applications, such as sensing and 
filtering,[50] and also to realizing room temperature nanome-
chanical quantum technologies.[40,86] An advantage of alterna-
tive materials, specifically diamond and silicon carbide with 
low intrinsic dissipation, is that they can immediately translate 
into better performance of existing nanomechanical resonator 
geometries. For example, fabricating the Si N3 4 soft-clamped 
devices from ref.  [45] instead from diamond could reduce 
intrinsic dissipation by over an order of magnitude. This would 
translate into force sensitivities on the order of ≈ −10 zN Hz 1/2 
at room temperature. Similar sensitivity gains could be seen 
across various sensing applications including mass and single-
molecule sensing with the introduction of new materials with 
less intrinsic dissipation.

In addition to providing immediate improvement in nanome-
chanical performance, a shift toward materials like diamond and 
silicon carbide could create new research directions. For instance, 
in addition to their excellent mechanical properties, diamond and 
silicon carbide have proven to be ideal for integrated quantum 
photonics and solid-state qubits.[129–132] Therefore, the realization 
of ultra-low dissipation nanomechanical resonators made of dia-
mond or silicon carbide could allow for the natural interfacing of 
nanomechanics and color centers.[133–136] This could allow for the 
realization of hybrid solid-state quantum systems.[137]

6. Outlook

The utilization of dissipation dilution promises to significantly 
extend the applications and performance of nanomechanical 

Table 1. Various properties of the devices in Figure 11, including resonator class, aspect ratio, deposition stress, and material. The aspect ratio represents 
the longest dimension reported, whether that be length or width, divided by the resonator thickness. Materials listed with aspect ratios > correspond to 
monolayer or multiple layer 2D materials in which the thickness was inferred to be 1 nm, where it is quite possible those devices could be thinner.

Reference Quality factor [× 106] Frequency [MHz] Resonator class Material Stress (GPa) Aspect ratio [L h−1] Cryogenic

[27] 1 .389 Membrane Si3N4 .25 10 600 No

[43] 3 3.5 String Si3N4 1 3200 No

[44] 210 .777 Membrane Si3N4 1.27 85 714 No

[45] 1000 .107 Hierarchial string Si3N4 1 200 000 Yes

[47] 800 1.3 String Si3N4 1.1 350 000 No

[48] 2 .212 Trampoline SiC .66 5384 No

[68] 50 2 Membrane Si3N4 .85 50 000 No

[83] 4 5 Membrane Si3N4 1 10 000 No

[84] 7 .176 String Si3N4 .89 9891 No

[86] 98 .140 Trampoline Si3N4 1.3 49 497 No

[87] 45 .0409 Trampoline Si3N4 .95 53 033 No

[93] 100 .920 String Si3N4 n/a n/a Yes

[105] .2 4.4 String Si3N4 1.2 571 No

[107] 5 .9 Membrane Si3N4 .9 20 000 No

[107] .2 1.3 Membrane Al-Si3N4 .35 10 000 No

[111] 3.5 .095 String Si3N4 .14 16 000 No

[114] 110 .240 Trampoline Si3N4 1.2 28 000 No

[116] 3 .278 String SiC 1.5 3647 No

[119] 1 3 String Si3N4 1.14 2500 No

[138] 30 .040 Membrane Si3N4 .9 18 888 No

[139] 1.3 1.03 String Si3N4 1.2 2750 No

[140] 1.1 .133 Membrane Si3N4 n/a 20 000 No

[141] .014 130 String Graphene .3 >2000 Yes

[142] .019 2.9 String GaAs .375 500 No

[143] .047 56 Membrane WSe2 .03 >3000 Yes

[144] .12 .911 String GaN .64 800 No

[145] .12 .768 String GaNAs .25 500 No

[146] .245 52.3 Membrane Graphene/NbSe2 n/a n/a No

[147] .36 10.6 Membrane Al n/a 150 Yes

[148] 1 .425 Membrane InGaP .17 33 333 Yes

[149] 2 .059 Membrane GaAs .11 11 937 No
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resonators. Alongside techniques to control extrinsic dissipa-
tion, dissipation dilution has already allowed for over five orders 
of magnitude enhancement in a nanomechanical resonator’s 
quality factor.[44,45,47] Further increases in dissipation dilution will 
likely occur through the use of new resonator geometries. As we 
have shown dissipation dilution is highly dependent on geometry, 
with recent works using topology optimization and hierarchical 
structures showing that new device geometries with better perfor-
mance are still being found.[45,114] It is likely that refined optimi-
zation techniques, and/or human insight will discover alternative 
geometries with better performance or geometries better suited 
for certain applications. A shift toward other materials will cer-
tainly further enhance the quality factors that are accessible in 
nanomechanical resonators. Materials with low intrinsic dissipa-
tion and large yield strengths, such as the crystalline alternatives 
presented in Figure  11, are ideal candidates for ultra-coherent 
resonators. While these alternative materials have high potential, 
experimental progress has been slowed by challenges in fabrica-
tion. As a result of their strength and lattice structure, fabrication 
and film growth of crystalline mechanical resonators presents real 
challenges. For example, in the growth of crystalline materials 
even slight defects can create propagating cracks throughout the 
material, and cause additional material loss.[48] Despite these chal-
lenges, the massive yield strength of these materials, particularly 
graphene with a yield strength of 130 GPa,[127] offer great opportu-
nities for dissipation dilution and strain engineering techniques.
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