Quantum magnetomechanics: Towards the ultrastrong coupling regime

Image credit: E. Romero

Abstract

In this paper we investigate a hybrid quantum system comprising a mechanical oscillator coupled via magnetic induced electromotive force to an LC resonator. We derive the Lagrangian and Hamiltonian for this system and find that the interaction can be described by a charge-momentum coupling with a strength that has a strong geometry dependence. We focus our study on a mechanical resonator with a thin-film magnetic coating which interacts with a nanofabricated planar coil. We determine that the coupling rate between these two systems can enter the strong and ultrastrong coupling regimes with experimentally feasible parameters. This magnetomechanical configuration allows for a range of applications including electromechanical state transfer and weak-force sensing.

Publication
In Physical Review B
Erick Romero
Erick Romero
Senior Process Development Engineer

Erick Romero received his Ph.D. in Physics from the University of Queensland in Australia. As a postdoctoral fellow his research focuses on the fundamental origins of nanomechanical dissipation. His current research ranges from high precision sensors, nanomechanical computing, and nanomechanical hybrid systems. His research has been supported by CONACYT, the Australian Research Council, Lockheed Martin and the Australian Defence Science and Technology Group. He currently works at the Australian National Fabrication Facility supporting and developing nanofabrication processes. Contact him below if you would like to get in touch about nanofabrication.

Related